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1. (Exercise 4.2 of [SS03]) If f € §, with a > 0, then for any positive integer n one
has £ € §, whenever 0 < b < a.

Solution. Let a > 0 and denote by S, the horizontal strip
Se i ={2€C:|Im(z)| <a}.
Then recall that the condition that f € §, means that

(a) f is holomorphic in S,,
(b) there exists a constant A > 0 such that

lf(x+iy)| < for all x € R and |y| < a.

1+ 22

Let 0 < b < a and consider f™. Since S, is open for all 0 < b < a, the equivalence of
the holomorphic property and analyticity in an open set (i.e. Theorem 2.6, Corollary
2.7, and Theorem 4.4 of [SS03]) gives that f™ is also holomorphic in S for each
n € N. In fact, we actually have that f is holomorphic in S, for each n € N.

It remains to check that there is a constant A, > 0 such that

for all x € R and |y| < b.
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Let § := a —b > 0 and consider the disk of radius ¢ centred at w € S, (thus
Ds(w) C S, still. Then by the Cauchy integral formula, we have

n! f(2)
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One can check that when |[Re(w)| > 2§, (Re(w) + 56i9)2 > w — 42, and so
A A A 4A

< < < ,
1+ (Re(w + de))” — 1 4 Belw? 52 = 1 4 Be(w)® =1 4 Re(w)?
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and when |Re(w)| < 2§, we instead have
A - A(1 + 46%)
1+ (Re(w + ei?))> — 1+ Re(w)?’
4An! A(1 + 46%)n!
2mon’ 2mon

So taking A,, := max{ }, we are done. |

2. (Exercise 4.4 of [SS03]) Suppose @ is a polynomial of degree > 2 with distinct roots,
none lying on the real axis. Calculate

00 6—271'1:(:(

N —(1:) de, C€eR

in terms of the roots of ). What happens when several roots coincide? [Hint:
Consider separately the cases ¢ < 0,¢ =0, and ¢ > 0. Use residues.]

Solution. Write Q(z2) = a,2"+a,_ 12" '+ - +ayz2+ag with a,, # 0. For |z| = R >0
large enough depending on |a,|, we have the estimate

1Q(2)] = |anz" + an12" '+ 4 arz + agl

> |ag|l2]" = lan-al[z["™" = = Jau]2] = |ao]
| 1] a1 |aol
R
|an
> %ol pn
- 2
|an| o
> —R
- 2
since n > 2.
Suppose @(z) has distinct roots aq, ..., a, with multiplicities my, ..., m; such that
¢
>~ my = n, that is, we can write Q(z) = (z—ay)™ -+ - (z—ag)™ - - - (z—ay)™. With-
k=1
out loss of generality, we can order the roots so that the roots numbered 1,...,/,
lie in the upper half-plane and the roots numbered ¢y + 1,...,¢ lie in the lower

half-plane for some 1 < £y < ¢. Note that there is an R > 0 large enough so that
all the roots have modulus less than R, i.e., they all lie within the disk of radius R.

We first handle the case where ¢ < 0. Let g := Ig U C}, be the contour composed
of the interval Ir = [—R, R] and the upper half-circle of radius R in the counter-
clockwise orientation. Then the residue theorem gives

o—2mizC R —2mix( e—2mizC fo o—2mizC
dz + dr = dz = 2mi IeSy—g, ————.
e 06 T L ow T )L am 2t 0y
6727T’L.Z<
Denote by Q(z) = ie.

(Z — al)ml . (z — ak_l)mk—l(z — Ofk;+1)mk+l . e (Z — aﬁ)mé7

e 2= _ _Qk(z)  Then we have
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where Q,(Cm’fl)(ak) denotes the (my — 1)-th derivative of Qx(z) (see Section 80
“Residues at Poles” of Brown and Churchill’'s “Complex Variables and Applica-
tions”, ninth edition).

Using the estimate above, we have that

/ 672m'zcd
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which vanishes as we take R — +00. So taking R — 400, we have that

o] 727”23( (my— 1)

_ Qy
O ——dx = QWZZ mk—l

For the case where ¢ > 0, a similar argument using the contour 75 = IrU Cf where
IR is the straight line segment going from —R to R and C; is the lower half-circle
of radius R in the clockwise orientation yields

0 e—27ria:( Q (mp—1) )
dr = —2m
—o0 Q('T) k;l mk - 1
D |
3. (Exercise 4.6 of [SS03]) Prove that
1 - a = —2maln|
T n;)o a? +n2 = nzzooe
whenever a > 0. Hence show that the sum equals coth 7a.
1
Solution. Let f(n) = —— - 5+ Then by the Poisson summation formula, we have
Tac+n

Y f)y=3" fn)

neZ nel

R 1 ,
where f(¢) = p f_oo 2 - 2672”””4d<’. Then, using the result of Exercise 4.3 (also

covered in tutorial), we know that

f(g) = l /oo Le_%rideC _ 6—27ra|q

2 2
o A"+ T
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and hence

1 = = —ZaTa|n = —zTan
D D D M

=— n=-—00

e—27ra 1 +€—27ra
=1+2 (1 — e2m> =1 o2 = cothma

as required. |

4. (Exercise 4.9 of [SS03]) Here are further results similar to the Phragmén-Lindel6f
theorem.

(a) Let F' be a holomorphic function in the right half-plane that extends continu-
ously to the boundary, that is, the imaginary axis. Suppose that |F(iy)| < 1
for all y € R, and

IP(2)] < et

for some ¢,C > 0 and v < 1. Prove that |F(z)| < 1 for all z in the right
half-plane.

(b) More generally, let S be a sector whose vertex is the origin, and forming an
angle of 7/3. Let F be a holomorphic function in S that is continuous on the
closure of S, so that |F(2)| <1 on the boundary of S and

|F(2)] < Ce!” for all z € S
for some ¢,C' > 0 and 0 < a < . Prove that |F(z)] <1 for all z € S.

Solution. (a) One can see that (a) follows from (b), so we only show (b).

(b) Fix v with @ < v < . After a rotation, without loss of generality we can
assume S is the set

™ ™
S—{ZEC.—%<arg(z)<%},
Let € > 0 be given. Define
Gu(2) = F(2)e" — F(z)eson0rosts)

and note that we can choose a branch of the logarithm on S that is well-defined
and holomorphic.

Note that on the boundary of S, we have that
Ge(2)] = [F(2)e™ | < e <1

since |F'(z)| <1 on the boundary of S.
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Let z € S and write z = Re® for some R > 0 and —% < 9%. Then we write
27 = R cos (v0) + iR" sin (76) and we have

|Ge(2)] = [F(2)e"| < |F(2)|le™| < |F(z)|e = cos 00 |gmi=RTsin(0))
|F(Z)|€—ER’Y cos (v0) < ‘F(Z)‘e—aR“f cos (%’)
| F(2)]e R e (emeR ™ cos (57))

< Cem(c—sm*a cos (%)) —0as R — +o0

IN

where we used the assumption on F' and the fact that v > a. Since G, vanishes
at infinity, the maximal M = maxg|G.(2)| must be achieved on some point
a. If a € S, the maximum modulus principle implies that G, is constant and
therefore |G.(2)| < 1in S since G. is continuous to the boundary and we have
that |G<(z)] < 1 on the boundary as shown above. If however a € 95, we
already know that |G.(2)| < 1 there and hence we know that |G.(z)| < 1in S.
In either case, we have that |G.(z)| < 1 on S. Taking ¢ — 0" and arguing by
continuity, we obtain the desired result.

<
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