THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4060 Complex Analysis Homework 1 Suggested Solutions Date: 6 February, 2025

1. (Exercise 4.2 of [SS03]) If $f \in \mathfrak{F}_a$ with a > 0, then for any positive integer n one has $f^{(n)} \in \mathfrak{F}_b$ whenever $0 \le b < a$.

Solution. Let a > 0 and denote by S_a the horizontal strip

$$S_a := \{ z \in \mathbb{C} : |\mathrm{Im}(z)| < a \}.$$

Then recall that the condition that $f \in \mathfrak{F}_a$ means that

- (a) f is holomorphic in S_a ,
- (b) there exists a constant A > 0 such that

$$|f(x+iy)| \le \frac{A}{1+x^2}$$
 for all $x \in \mathbb{R}$ and $|y| < a$.

Let $0 \leq b < a$ and consider $f^{(n)}$. Since S_b is open for all $0 \leq b < a$, the equivalence of the holomorphic property and analyticity in an open set (i.e. Theorem 2.6, Corollary 2.7, and Theorem 4.4 of [SS03]) gives that $f^{(n)}$ is also holomorphic in S_b for each $n \in \mathbb{N}$. In fact, we actually have that $f^{(n)}$ is holomorphic in S_a for each $n \in \mathbb{N}$.

It remains to check that there is a constant $A_n > 0$ such that

$$\left|f^{(n)}(x+iy)\right| \le \frac{A_n}{1+x^2}$$
 for all $x \in \mathbb{R}$ and $|y| < b$.

Let $\delta := a - b > 0$ and consider the disk of radius δ centred at $w \in S_b$ (thus $D_{\delta}(w) \subset S_a$ still. Then by the Cauchy integral formula, we have

$$\begin{aligned} f^{(n)}(w) &| = \frac{n!}{2\pi} \left| \int_{\partial D_{\delta}(w)} \frac{f(z)}{(z-w)^{n+1}} dz \right| \\ &= \frac{n!}{2\pi} \left| \int_{0}^{2\pi} \frac{f(w+\delta e^{i\theta} \delta e^{i\theta})}{(\delta e^{i\theta})^{n+1}} d\theta \right| \\ &\leq \frac{n!}{2\pi} \int_{0}^{2\pi} \frac{\left| f(w+\delta e^{i\theta}) \right|}{\delta^{n}} d\theta \\ &\leq \frac{n!}{2\pi \delta^{n}} \int_{0}^{2\pi} \frac{A}{1 + (\operatorname{Re}(w+\delta e^{i\theta}))^{2}} d\theta. \end{aligned}$$

One can check that when $|\operatorname{Re}(w)| > 2\delta$, $(\operatorname{Re}(w) + \delta e^{i\theta})^2 \ge \frac{\operatorname{Re}(w)^2}{2} - \delta^2$, and so

$$\frac{A}{1 + (\operatorname{Re}(w + \delta e^{i\theta}))^2} \le \frac{A}{1 + \frac{\operatorname{Re}(w)^2}{2} - \delta^2} \le \frac{A}{1 + \frac{\operatorname{Re}(w)^2}{4}} \le \frac{4A}{1 + \operatorname{Re}(w)^2},$$

and when $|\operatorname{Re}(w)| \leq 2\delta$, we instead have

$$\frac{A}{1 + (\operatorname{Re}(w + \delta e^{i\theta}))^2} \leq \frac{A(1 + 4\delta^2)}{1 + \operatorname{Re}(w)^2}.$$

So taking $A_n := \max\left\{\frac{4An!}{2\pi\delta^n}, \frac{A(1 + 4\delta^2)n!}{2\pi\delta^n}\right\}$, we are done.

2. (Exercise 4.4 of [SS03]) Suppose Q is a polynomial of degree ≥ 2 with distinct roots, none lying on the real axis. Calculate

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x\zeta}}{Q(x)} dx, \quad \zeta \in \mathbb{R}$$

in terms of the roots of Q. What happens when several roots coincide? [Hint: Consider separately the cases $\zeta < 0, \zeta = 0$, and $\zeta > 0$. Use residues.]

Solution. Write $Q(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ with $a_n \neq 0$. For |z| = R > 0 large enough depending on $|a_n|$, we have the estimate

$$\begin{aligned} |Q(z)| &= |a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0| \\ &\ge |a_n| |z|^n - |a_{n-1}| |z|^{n-1} - \dots - |a_1| |z| - |a_0| \\ &= R^n \left(|a_n| - \frac{|a_{n-1}|}{R} - \dots - \frac{|a_1|}{R^{n-1}} - \frac{|a_0|}{R^n} \right) \\ &\ge \frac{|a_n|}{2} R^n \\ &\ge \frac{|a_n|}{2} R^2 \end{aligned}$$

since $n \ge 2$.

Suppose Q(z) has distinct roots $\alpha_1, \ldots, \alpha_\ell$ with multiplicities m_1, \ldots, m_ℓ such that $\sum_{k=1}^{\ell} m_k = n$, that is, we can write $Q(z) = (z - \alpha_1)^{m_1} \cdots (z - \alpha_k)^{m_k} \cdots (z - \alpha_\ell)^{m_\ell}$. Without loss of generality, we can order the roots so that the roots numbered $1, \ldots, \ell_0$ lie in the upper half-plane and the roots numbered $\ell_0 + 1, \ldots, \ell$ lie in the lower half-plane for some $1 \leq \ell_0 \leq \ell$. Note that there is an R > 0 large enough so that all the roots have modulus less than R, i.e., they all lie within the disk of radius R. We first handle the case where $\zeta \leq 0$. Let $\gamma_R := I_R \cup C_R^+$ be the contour composed of the interval $I_R = [-R, R]$ and the upper half-circle of radius R in the counter-clockwise orientation. Then the residue theorem gives

$$\int_{C_{R}^{+}} \frac{e^{-2\pi i z\zeta}}{Q(z)} dz + \int_{-R}^{R} \frac{e^{-2\pi i z\zeta}}{Q(x)} dx = \int_{\gamma_{R}} \frac{e^{-2\pi i z\zeta}}{Q(z)} dz = 2\pi i \sum_{k=1}^{\ell_{0}} \operatorname{res}_{z=\alpha_{k}} \frac{e^{-2\pi i z\zeta}}{Q(z)}.$$
Denote by $Q_{k}(z) = \frac{e^{-2\pi i z\zeta}}{(z-\alpha_{1})^{m_{1}} \cdots (z-\alpha_{k-1})^{m_{k-1}} (z-\alpha_{k+1})^{m_{k+1}} \cdots (z-\alpha_{\ell})^{m_{\ell}}},$ i.e. $\frac{e^{-2\pi i z\zeta}}{Q(z)} = \frac{Q_{k}(z)}{(z-\alpha_{k})^{m_{k}}}.$ Then we have

$$\operatorname{res}_{z=\alpha_k} \frac{e^{-2\pi i z \zeta}}{Q(z)} = \frac{Q_k^{(m_k-1)}(\alpha_k)}{(m_k-1)!}$$

where $Q_k^{(m_k-1)}(\alpha_k)$ denotes the $(m_k - 1)$ -th derivative of $Q_k(z)$ (see Section 80 "Residues at Poles" of Brown and Churchill's "Complex Variables and Applications", ninth edition).

Using the estimate above, we have that

$$\left| \int_{C_R^+} \frac{e^{-2\pi i z \zeta}}{Q(z)} dz \right| \leq \int_0^\pi \frac{e^{2\pi R \zeta \sin \theta}}{\frac{|a_n|}{2} R^2} R d\theta$$
$$\leq \int_0^\pi \frac{1}{\frac{|a_n|}{2} R} d\theta$$
$$= \frac{\pi}{\frac{|a_n|}{2} R}$$

which vanishes as we take $R \to +\infty$. So taking $R \to +\infty$, we have that

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x\zeta}}{Q(x)} dx = 2\pi i \sum_{k=1}^{\ell_0} \frac{Q_k^{(m_k-1)}(\alpha_k)}{(m_k-1)!}.$$

For the case where $\zeta > 0$, a similar argument using the contour $\tilde{\gamma}_R = \tilde{I}_R \cup C_R^-$ where \tilde{I}_R is the straight line segment going from -R to R and C_R^- is the lower half-circle of radius R in the clockwise orientation yields

$$\int_{-\infty}^{\infty} \frac{e^{-2\pi i x \zeta}}{Q(x)} dx = -2\pi i \sum_{k=\ell_0+1}^{\ell} \frac{Q_k^{(m_k-1)}(\alpha_k)}{(m_k-1)!}.$$

3. (Exercise 4.6 of [SS03]) Prove that

$$\frac{1}{\pi}\sum_{n=-\infty}^{\infty}\frac{a}{a^2+n^2} = \sum_{n=-\infty}^{\infty}e^{-2\pi a|n|}$$

whenever a > 0. Hence show that the sum equals $\coth \pi a$.

Solution. Let $f(n) = \frac{1}{\pi} \frac{a}{a^2 + n^2}$. Then by the Poisson summation formula, we have

$$\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \hat{f}(n)$$

where $\hat{f}(\zeta) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} e^{-2\pi i x \zeta} d\zeta$. Then, using the result of Exercise 4.3 (also covered in tutorial), we know that

$$\hat{f}(\zeta) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} e^{-2\pi i x \zeta} d\zeta = e^{-2\pi a |\zeta|}$$

and hence

$$\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{a}{a^2 + n^2} = \sum_{n=-\infty}^{\infty} e^{-2\pi a |n|} = 1 + 2\sum_{n=1}^{\infty} e^{-2\pi a n}$$
$$= 1 + 2\left(\frac{e^{-2\pi a}}{1 - e^{-2\pi a}}\right) = \frac{1 + e^{-2\pi a}}{1 - e^{-2\pi a}} = \coth \pi a$$

as required.

- 4. (Exercise 4.9 of [SS03]) Here are further results similar to the Phragmén-Lindelöf theorem.
 - (a) Let F be a holomorphic function in the right half-plane that extends continuously to the boundary, that is, the imaginary axis. Suppose that $|F(iy)| \leq 1$ for all $y \in \mathbb{R}$, and

$$|F(z)| \le Ce^{c|z|^{\gamma}}$$

for some c, C > 0 and $\gamma < 1$. Prove that $|F(z)| \leq 1$ for all z in the right half-plane.

(b) More generally, let S be a sector whose vertex is the origin, and forming an angle of π/β . Let F be a holomorphic function in S that is continuous on the closure of S, so that $|F(z)| \leq 1$ on the boundary of S and

$$|F(z)| \leq C e^{c|z|^{\alpha}}$$
 for all $z \in S$

for some c, C > 0 and $0 < \alpha < \beta$. Prove that $|F(z)| \leq 1$ for all $z \in S$.

Solution. (a) One can see that (a) follows from (b), so we only show (b).

(b) Fix γ with $\alpha < \gamma < \beta$. After a rotation, without loss of generality we can assume S is the set

$$S = \left\{ z \in \mathbb{C} : -\frac{\pi}{2\beta} < \arg(z) < \frac{\pi}{2\beta} \right\}$$

Let $\varepsilon > 0$ be given. Define

$$G_{\varepsilon}(z) = F(z)e^{-\varepsilon z^{\gamma}} = F(z)e^{-\varepsilon \exp(\gamma \log(z))}$$

and note that we can choose a branch of the logarithm on S that is well-defined and holomorphic.

Note that on the boundary of S, we have that

$$|G_{\varepsilon}(z)| = |F(z)e^{-\varepsilon z^{\gamma}}| \le e^{-\varepsilon |z|^{\gamma}} \le 1$$

since $|F(z)| \leq 1$ on the boundary of S.

Let $z \in S$ and write $z = Re^{i\theta}$ for some R > 0 and $-\frac{\pi}{2\beta} \leq \theta \frac{\pi}{2\beta}$. Then we write $z^{\gamma} = R^{\gamma} \cos(\gamma \theta) + iR^{\gamma} \sin(\gamma \theta)$ and we have

$$\begin{aligned} |G_{\varepsilon}(z)| &= |F(z)e^{-\varepsilon z^{\gamma}}| \leq |F(z)||e^{-\varepsilon z^{\gamma}}| \leq |F(z)|e^{-\varepsilon R^{\gamma}\cos\left(\gamma\theta\right)}|e^{-i\varepsilon R^{\gamma}\sin\left(\gamma\theta\right)}| \\ &\leq |F(z)|e^{-\varepsilon R^{\gamma}\cos\left(\gamma\theta\right)} \leq |F(z)|e^{-\varepsilon R^{\gamma}\cos\left(\frac{\pi\gamma}{\beta}\right)} \\ &= |F(z)|e^{-cR^{\alpha}}e^{R^{\gamma}\left(c-\varepsilon R^{\gamma-\alpha}\cos\left(\frac{\pi\gamma}{\beta}\right)\right)} \\ &\leq Ce^{R^{\gamma}\left(c-\varepsilon R^{\gamma-\alpha}\cos\left(\frac{\pi\gamma}{\beta}\right)\right)} \to 0 \text{ as } R \to +\infty \end{aligned}$$

where we used the assumption on F and the fact that $\gamma > \alpha$. Since G_{ε} vanishes at infinity, the maximal $M = \max_{\overline{S}} |G_{\varepsilon}(z)|$ must be achieved on some point a. If $a \in S$, the maximum modulus principle implies that G_{ε} is constant and therefore $|G_{\varepsilon}(z)| \leq 1$ in \overline{S} since G_{ε} is continuous to the boundary and we have that $|G_{\varepsilon}(z)| \leq 1$ on the boundary as shown above. If however $a \in \partial S$, we already know that $|G_{\varepsilon}(z)| \leq 1$ there and hence we know that $|G_{\varepsilon}(z)| \leq 1$ in \overline{S} . In either case, we have that $|G_{\varepsilon}(z)| \leq 1$ on \overline{S} . Taking $\varepsilon \to 0^+$ and arguing by continuity, we obtain the desired result.

◀

References

[SS03] Elias M. Stein and Rami Shakarchi. *Complex Analysis*. Princeton University Press, 2003.