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1. (Exercise 4.2 of [SS03]) If f ∈ Fa with a > 0, then for any positive integer n one
has f (n) ∈ Fb whenever 0 ≤ b < a.

Solution. Let a > 0 and denote by Sa the horizontal strip

Sa := {z ∈ C : |Im(z)| < a} .

Then recall that the condition that f ∈ Fa means that

(a) f is holomorphic in Sa,

(b) there exists a constant A > 0 such that

|f(x+ iy)| ≤ A

1 + x2
for all x ∈ R and |y| < a.

Let 0 ≤ b < a and consider f (n). Since Sb is open for all 0 ≤ b < a, the equivalence of
the holomorphic property and analyticity in an open set (i.e. Theorem 2.6, Corollary
2.7, and Theorem 4.4 of [SS03]) gives that f (n) is also holomorphic in Sb for each
n ∈ N. In fact, we actually have that f (n) is holomorphic in Sa for each n ∈ N.
It remains to check that there is a constant An > 0 such that∣∣f (n)(x+ iy)

∣∣ ≤ An

1 + x2
for all x ∈ R and |y| < b.

Let δ := a − b > 0 and consider the disk of radius δ centred at w ∈ Sb (thus
Dδ(w) ⊂ Sa still. Then by the Cauchy integral formula, we have

∣∣f (n)(w)
∣∣ = n!

2π

∣∣∣∣∫
∂Dδ(w)

f(z)

(z − w)n+1
dz

∣∣∣∣
=

n!

2π

∣∣∣∣∫ 2π

0

f(w + δeiθδeiθ

(δeiθ)n+1
dθ

∣∣∣∣
≤ n!

2π

∫ 2π

0

∣∣f(w + δeiθ)
∣∣

δn
dθ

≤ n!

2πδn

∫ 2π

0

A

1 + (Re(w + δeiθ))2
dθ.

One can check that when |Re(w)| > 2δ,
(
Re(w) + δeiθ

)2 ≥ Re(w)2

2
− δ2, and so

A

1 + (Re(w + δeiθ))2
≤ A

1 + Re(w)2

2
− δ2

≤ A

1 + Re(w)2

4

≤ 4A

1 + Re(w)2
,
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and when |Re(w)| ≤ 2δ, we instead have

A

1 + (Re(w + δeiθ))2
≤ A(1 + 4δ2)

1 + Re(w)2
.

So taking An := max

{
4An!

2πδn
,
A(1 + 4δ2)n!

2πδn

}
, we are done. ◀

2. (Exercise 4.4 of [SS03]) Suppose Q is a polynomial of degree ≥ 2 with distinct roots,
none lying on the real axis. Calculate∫ ∞

−∞

e−2πixζ

Q(x)
dx, ζ ∈ R

in terms of the roots of Q. What happens when several roots coincide? [Hint:
Consider separately the cases ζ < 0, ζ = 0, and ζ > 0. Use residues.]

Solution. WriteQ(z) = anz
n+an−1z

n−1+· · ·+a1z+a0 with an ̸= 0. For |z| = R > 0
large enough depending on |an|, we have the estimate

|Q(z)| = |anzn + an−1z
n−1 + · · ·+ a1z + a0|

≥ |an||z|n − |an−1||z|n−1 − · · · − |a1||z| − |a0|

= Rn

(
|an| −

|an−1|
R

− · · · − |a1|
Rn−1

− |a0|
Rn

)
≥ |an|

2
Rn

≥ |an|
2

R2

since n ≥ 2.

Suppose Q(z) has distinct roots α1, . . . , αℓ with multiplicities m1, . . . ,mℓ such that
ℓ∑

k=1

mk = n, that is, we can writeQ(z) = (z−α1)
m1 · · · (z−αk)

mk · · · (z−αℓ)
mℓ . With-

out loss of generality, we can order the roots so that the roots numbered 1, . . . , ℓ0
lie in the upper half-plane and the roots numbered ℓ0 + 1, . . . , ℓ lie in the lower
half-plane for some 1 ≤ ℓ0 ≤ ℓ. Note that there is an R > 0 large enough so that
all the roots have modulus less than R, i.e., they all lie within the disk of radius R.

We first handle the case where ζ ≤ 0. Let γR := IR ∪ C+
R be the contour composed

of the interval IR = [−R,R] and the upper half-circle of radius R in the counter-
clockwise orientation. Then the residue theorem gives∫

C+
R

e−2πizζ

Q(z)
dz +

∫ R

−R

e−2πixζ

Q(x)
dx =

∫
γR

e−2πizζ

Q(z)
dz = 2πi

ℓ0∑
k=1

resz=αk

e−2πizζ

Q(z)
.

Denote by Qk(z) =
e−2πizζ

(z − α1)m1 · · · (z − αk−1)mk−1(z − αk+1)mk+1 · · · (z − αℓ)mℓ
, i.e.

e−2πizζ

Q(z)
= Qk(z)

(z−αk)
mk

. Then we have

resz=αk

e−2πizζ

Q(z)
=

Q
(mk−1)
k (αk)

(mk − 1)!
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where Q
(mk−1)
k (αk) denotes the (mk − 1)-th derivative of Qk(z) (see Section 80

“Residues at Poles” of Brown and Churchill’s “Complex Variables and Applica-
tions”, ninth edition).

Using the estimate above, we have that∣∣∣∣∣
∫
C+

R

e−2πizζ

Q(z)
dz

∣∣∣∣∣ ≤
∫ π

0

e2πRζ sin θ

|an|
2
R2

Rdθ

≤
∫ π

0

1
|an|
2
R
dθ

=
π

|an|
2
R

which vanishes as we take R → +∞. So taking R → +∞, we have that∫ ∞

−∞

e−2πixζ

Q(x)
dx = 2πi

ℓ0∑
k=1

Q
(mk−1)
k (αk)

(mk − 1)!
.

For the case where ζ > 0, a similar argument using the contour γ̃R = ĨR∪C−
R where

ĨR is the straight line segment going from −R to R and C−
R is the lower half-circle

of radius R in the clockwise orientation yields∫ ∞

−∞

e−2πixζ

Q(x)
dx = −2πi

ℓ∑
k=ℓ0+1

Q
(mk−1)
k (αk)

(mk − 1)!
.

◀

3. (Exercise 4.6 of [SS03]) Prove that

1

π

∞∑
n=−∞

a

a2 + n2
=

∞∑
n=−∞

e−2πa|n|

whenever a > 0. Hence show that the sum equals cothπa.

Solution. Let f(n) =
1

π

a

a2 + n2
. Then by the Poisson summation formula, we have

∑
n∈Z

f(n) =
∑
n∈Z

f̂(n)

where f̂(ζ) =
1

π

∫∞
−∞

a

a2 + x2
e−2πixζdζ. Then, using the result of Exercise 4.3 (also

covered in tutorial), we know that

f̂(ζ) =
1

π

∫ ∞

−∞

a

a2 + x2
e−2πixζdζ = e−2πa|ζ|
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and hence

1

π

∞∑
n=−∞

a

a2 + n2
=

∞∑
n=−∞

e−2πa|n| = 1 + 2
∞∑
n=1

e−2πan

= 1 + 2

(
e−2πa

1− e−2πa

)
=

1 + e−2πa

1− e−2πa
= cothπa

as required. ◀

4. (Exercise 4.9 of [SS03]) Here are further results similar to the Phragmén-Lindelöf
theorem.

(a) Let F be a holomorphic function in the right half-plane that extends continu-
ously to the boundary, that is, the imaginary axis. Suppose that |F (iy)| ≤ 1
for all y ∈ R, and

|F (z)| ≤ Cec|z|
γ

for some c, C > 0 and γ < 1. Prove that |F (z)| ≤ 1 for all z in the right
half-plane.

(b) More generally, let S be a sector whose vertex is the origin, and forming an
angle of π/β. Let F be a holomorphic function in S that is continuous on the
closure of S, so that |F (z)| ≤ 1 on the boundary of S and

|F (z)| ≤ Cec|z|
α

for all z ∈ S

for some c, C > 0 and 0 < α < β. Prove that |F (z)| ≤ 1 for all z ∈ S.

Solution. (a) One can see that (a) follows from (b), so we only show (b).

(b) Fix γ with α < γ < β. After a rotation, without loss of generality we can
assume S is the set

S =

{
z ∈ C : − π

2β
< arg(z) <

π

2β

}
.

Let ε > 0 be given. Define

Gε(z) = F (z)e−εzγ = F (z)e−ε exp(γ log(z))

and note that we can choose a branch of the logarithm on S that is well-defined
and holomorphic.

Note that on the boundary of S, we have that

|Gε(z)| = |F (z)e−εzγ | ≤ e−ε|z|γ ≤ 1

since |F (z)| ≤ 1 on the boundary of S.
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Let z ∈ S and write z = Reiθ for some R > 0 and − π

2β
≤ θ

π

2β
. Then we write

zγ = Rγ cos (γθ) + iRγ sin (γθ) and we have

|Gε(z)| = |F (z)e−εzγ | ≤ |F (z)||e−εzγ | ≤ |F (z)|e−εRγ cos (γθ)|e−iεRγ sin (γθ)|

≤ |F (z)|e−εRγ cos (γθ) ≤ |F (z)|e−εRγ cos (πγ
β )

= |F (z)|e−cRα

eR
γ(c−εRγ−α cos (πγ

β ))

≤ CeR
γ(c−εRγ−α cos (πγ

β )) → 0 as R → +∞

where we used the assumption on F and the fact that γ > α. Since Gε vanishes
at infinity, the maximal M = maxS |Gε(z)| must be achieved on some point
a. If a ∈ S, the maximum modulus principle implies that Gε is constant and
therefore |Gε(z)| ≤ 1 in S since Gε is continuous to the boundary and we have
that |Gε(z)| ≤ 1 on the boundary as shown above. If however a ∈ ∂S, we
already know that |Gε(z)| ≤ 1 there and hence we know that |Gε(z)| ≤ 1 in S.
In either case, we have that |Gε(z)| ≤ 1 on S. Taking ε → 0+ and arguing by
continuity, we obtain the desired result.

◀
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